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Messages

1. Incompressible Navier-Stokes are important

2. Much progress in solvers for academic test
problems

3. Transfer methods to industrial problems
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1. Introduction
Flow In arteries
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Introduction

Flooding of the Netherlands, 1953
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Introduction
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Streamlines around the stern and the axial velocity field in
the wake.
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2. Problem

—vVu+uVu+Vp=7f in Q
Vau=0 In Q.

u is the fluid velocity vector

p is the pressure field

v > 0 is the kinematic viscosity coefficient ( 1/Re).

Q) c R?° 3 is a bounded domain with the boundary condition:

u=w on 0f)p, Vg—z—np:O on 0€y.
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Linear system

Matrix form after linearization and discretization:

F BT |u f
B 0] |p

where FF € R™"*" B e R™" feR*andm <n
® F = vAin Stokes problem, A is vector Laplacian matrix
® [ =vA+ N in Picard linearization, N is vector-convection matrix
® I =vA+ N+ W in Newton linearization, W is the Newton derivative matrix
® B s the divergence matrix

® Sparse linear system, Symmetric indefinite (Stokes problem), nonsymmetric
otherwise.

® Saddle point problem having large number of zeros on the main diagonal
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3. Krylov Solvers and preconditioners

® Direct method:
To solve Az = b,
factorize A into upper U and lower L triangular matrices (LUx = b)
First solve Ly = b, then Uz =y

Classical Iterative Schemes:

Methods based on matrix splitting, generates sequence of iterations
Tpr1 = M Y (Nzyp +b) = Qry, + s, where A = M — N

Jacobi, Gauss Seidel, SOR, SSOR

Krylov Subspace Methods:

Tk4+1 = Tk + Ok Pk

Some well known methods are

CGNR[1975], QMR[1991], CGS[1989], Bi-CGSTAB[1992], GMRES[1986],
GMRESR[1994], GCR[1986], IDR(s)[2007]
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IDR and IDR(s) (Induced Dimension Reduction)

* Sonneveld developed IDR in the 1970’s. IDR is a finite
termination (Krylov) method for solving nonsymmetric linear
systems.

* Analysis showed that IDR can be viewed as Bi-CG
combined with linear minimal residual steps.

* This discovery led to the development of first CGS, and later
of Bi-CGSTAB (by van der Vorst).
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IDR and IDR(s) (continued)

* As a result of these developments the basic IDR-idea was
abandoned for the Bi-CG-approach.

* Recently, Sonneveld and van Gijzen discovered that the
IDR-approach was abandoned too soon and proposed a
generalization of IDR: IDR(s).

® P. SONNEVELD AND M.B. vaN GluzeNn IDR(s): a family of simple
and fast algorithms for solving large nonsymmetric systems
of linear equations
SIAM J. Sci. Comput., 31, pp. 1035-1062, 2008

More information: http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

- November17,2015
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4. ILU-type Preconditioners

A linear system Ax = b is transformed into P~ Az = P~ !5 such that
°* P~ A
* Eigenvalues of P~!.A are more clustered than A

® Pz =r cheap to compute

Several approaches, we will discuss here

® |LU preconditioner
® Preconditioned IDR(s) and Bi-CGSTAB comparison

® Block preconditioners
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SILU preconditioners

New renumbering Scheme
® Renumbering of grid points:
® Sloan algorithm [Sloan - 1986]
® Cuthill McKee algorithms [Cuthill McKee - 1969]

® The unknowns are reordered by p-last or p-last per level methods

® In p-last reordering, first all the velocity unknowns are ordered followed by
pressure unknowns. Usually it produces a large profile but avoids breakdown
of LU decomposition.

® In p-last per level reordering, unknowns are reordered per level such that at
each level, the velocity unknowns are followed by the pressure unknowns.

|.N. Konshin, M.A. Olshanskii, Yu.V. Vassilevski, ILU preconditioners for non-symmetric
saddle point matrices with application to the incompressible Navier-Stokes equations,

SIAM J.Sci.Comp., 37 (2015), A2171-A2197
MNovember 17,2015 e
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SILU preconditioner

4 x 4 Q2-Q1 grid
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Numerical experiments (SILU preconditioner)

Driven cavity flow problem Backward facing step problem
(-11) u=0,y=0 (L)
}
4>
u=ty(l-y)—»
= ? u~p=0
> y =0
19
- u=0,=0 LY
] " " " " ] k
The iteration is stopped if the linear systems satisfy Iz < tol.

16]]2
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Numerical experiments (SILU preconditioners)

Stokes Problem in a square domain with Bi-CGSTAB,
accuracy = 107%, Sloan renumbering

Q2 — Q1 Q2 — P1
Grid size p-last | p-last per level p-last | p-last per level
16 x 16 | 36(0.11) 25(0.09) | 44(0.14) 34(0.13)
32 x 32| 90(0.92) 59(0.66) | 117(1.08) 75(0.80)
64 x 64 | 255(11.9) 135(6.7) 265(14) 165(9.0)
128 x 128 472(96) 249(52) | 597(127) 407(86)

Numerical Analysis Group, DIAM
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Numerical Experiments (IDR(s) vs Bi-CGSTAB)

SILU preconditioned: Comparison of iterative methods for increasing stretch factor for
the driven cavity Stokes problem.
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Stretch factor Stretch factor
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Numerical Experiments (IDR(s) vs Bi-CGSTAB(!))

SILU preconditioned: Comparison of iterative methods
Driven Cavity Stokes problem, stretch factor 10

Grid Bi-CGSTAB(!) IDR(s)
Mat.-Vec.(ts) Mat.-Vec.(ts)
128 x 128 1104(36.5) 638(24.7)
256 X 256 5904(810) 1749(307)

Channel flow Stokes problem, length 100

Grid Bi-CGSTAB(I) IDR(s)
Mat.-Vec.(ts) Mat.-Vec.(ts)
64 x 64 1520(12) 938(8.7)
128 x 128 NC 8224(335)

Numerical Analysis Group, DIAM
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5. Block preconditioners

F BT I 0 F 0 I M;'BT
A= EbDbub = = 1
B 0 BM; ' T 0 S 0 I

M; = M, = Fand S = —BF~!'BT is the Schur-complement matrix.

F BT F 0
Uyt = Dplly = . , Lyt = Ly Dy = |-
0 S B S

Preconditioners are based on combination of these blocks involve:

Fz1 = r1 The velocity subsystem

S — 8

Sz = 9 The pressure subsystem
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Block preconditioners

Block triangular preconditioners

F BT
P =Uy = A
0o S

® Pressure convectlon diffusion (PCD) [Kay et al, 2002]
S=—-A, Fy 'Q,, Q, is the pressure mass matrix

® |east squares commutator (LSC) [Elman et al, 2002]
S =—(BQy'BT)(BQy'FQ,'BT)~1(BQ,'BT), Q. is the velocity mass
matrix

® Augmented Lagrangian approach (AL) [Benzi and Olshanskii, 2006]
F is replaced by F,=F+ WBW—lBT
St = —(VQp +AW), W = Qp

® Benzi, Golub, and Liesen, Numerical Solution of Saddle Point Problem, Acta
Numerica, 2005
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Block preconditioners (SIMPLE)

SIMPLE-type preconditioners[Vuik et al-2000]

SIMPLE SIMPLER
z=U L p=U L
z=z+U L — Az)
M, =D M; = M, = D, D = diag(F)
S =BD BT S =BD BT
One Poisson solve Two Poisson solves
One velocity solve Two velocity solves

Lemma: In the SIMPLER preconditioner/algorithm, both variants (one
or two velocity solves) are identical .
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Improvements in SIMPLE-type preconditioners

We use approximate solvers for subsystems, so flexible Krylov solvers are required
(GCR, FGMRES, GMRESR)

MSIMPLER preconditioner:

Making the following changes in SIMPLER leads to the MSIMPLER preconditioner.
LSC: S ~ —(BQ. 'BT)(BQ. ' FQ. ' BT)"Y(BQ., 'BT)
N——

assuming Q. ! ~ I (e.g. time dependent problems with a small time step)
S =—-BQ, BT

MSIMPLER uses this approximation for the Schur complement and updates scaled with

A

Qu™ .

-Convergence better than other variants of SIMPLE
-Cheaper than SIMPLER (in construction) and LSC (per iteration)

~ November17,2015 2
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Numerical Experiments (comparison)

3D Backward facing step: Preconditioners used in the Stokes problem with
preconditioned GCR(20) with accuracy of 10~6 (SEPRAN) using Q2-Q1 hexahedrons

Grid SIMPLE LSC MSIMPLER
i in-it-u
iter. (ts)li?]-lit-p
8 x 8 x 16 44(4) 25 16(1.9) AL | 14(1.4) 2

16 x 16 x 32 | 84(107) 2% | 29(51) 6L | {7(21) 52

24 x 24 x 48 | 99(447) 239 | 26(233) 5o | 17(77) {12

32 x 32 x 40 | 132(972) 2L | 37(379) 232 | 20(143) 58
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Numerical Experiments (comparison)

3D Lid driven cavity problem (tetrahedrons):The Navier-Stokes problem is solved with
accuracy 10~4, a linear system at each Picard step is solved with accuracy 10~2 using
preconditioned Krylov subspace methods. Bi-CGSTAB is used as inner solver in block
preconditioners(SEPRAN)

Re LSC MSIMPLER SILU
GCRiter. (ts) | GCRiter. (ts) | Bi-CGSTAB iter. (ts)
16 x 16 x 16
20 30(20) 20(16) 144(22)
50 57(37) 37(24) 234(35)
100 120(81) 68(44) 427(62)
32 X 32 x 32
20 38(234) 29(144) 463(353)
50 87(544) 53(300) 764(585)
100 210(1440) 104(654) 1449(1116)

Numerical Analysis Group, DIAM
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Numerical Experiments (comparison)

2D Lid driven cavity problem on 64 x 64 stretched grid: The Stokes problem is solved
with accuracy 10~6. PCG is used as inner solver in block preconditioners (SEPRAN) .

Stretch factor LSC MSIMPLER SILU
GCR iter. GCR iter. Bi-CGSTAB iter.
1 20 17 96
8 49 28 189
16 71 34 317
32 97 45 414
64 145 56 NC
128 NC 81 NC
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The Augmented Lagrangian method

:

F BT
B O

— [f ] is transformed into
g

F+~BTw-1p BT f .
A Y= / or AapX=0>,
B 0 P g

with f = f + yBTW 1B g, where W is a non-singular matrix.

The Ideal AL preconditioner proposed for A 41, is

F+~BTW-1B 0
Prar = Wl

B 1
¥
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The Augmented Lagrangian method

(Sar, = —B(F +~vBTW~-1B)~1BT)
(Fy = F+vyBTW~1B)

® The Schur complement S 41, of A 4y, is approximated by —%W.
® The block F., becomes increasingly ill-conditioned with v — oo.
® |n practice it is often chosenas v =1, 0ory = O(1), and W = Qp.

® Open question: fast solution methods for systems with F,, which is denser than F
and consists of mixed derivatives.

[1] M. Benzi and M.A. Olshanskii. An augmented Lagrangian-based approach to the
Oseen problem. SIAM J. Sci. Comput., 28:2095-2113, 2006.

~ November17,2015 2T
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The Augmented Lagrangian method

The transformed coefficient matrix A7 = [F+’YBTW_1B BOT] and the ideal AL

B
F++vBTw~1B

precondition Pray = | B _ 1y ] includes (in 2D)

2

® the convection-diffusion block: F = [ "3 . ],

® the (negative) divergence matrix: B = [ B1 Bz ],

Fii+vBIw='B; ~ABTw=1B,

[ ] ifi i —
the modified pivot block F, = VBTW—1B;  FiyiyBIW 1B, |

F11+WBfW_lBl @)
yBIw='By  Fi1+yBIw~1B,
the modified AL preconditioner Pas a1, for A ..

One approximation of F, is F, = | ], which leads to
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The Augmented Lagrangian method

Py 0 _ (Fu+yBfw™lB1  yBTW™!B,
Prar = [ B —%W] (ny — [ ,YBgW—lBl F11+fyB§W_1B2])
P B [ﬁw 0 | (ﬁ _ [F11—|—fnyW_1B1 0 D

MAL =1lp 1w YL 4BTw-lB, F1+yBITW~1B,

® systems with £, are easier to be solved, compared to F..

® the number of iterations by using the ideal and modified AL preconditioners are
both independent of the mesh refinement, and nearly independent of the Reynolds
(viscosity) number.

® by using the modified AL preconditioner, there exists an optimal value of ~, which
minimises the number of Krylov subspace iterations. The optimal - is problem
dependent, but mesh size independent.

~ November17,2015 29
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Numerical experiments (Lid driven cavity)

Re 100 400 1000  2500*  5000*
modified AL preconditioner

Newton iterations: 6 7 7 8 9

GCR iterations: 8 14 21 33 50

total time: 148 26.2 74.6 1942 2771
modified ‘grad-div’ preconditioner

Newton iterations: 6 7 8 9 9

GCR iterations: 10 17 28 53 77

total time: 8.5 15.7 32.7 119.1 167.9
modified SIMPLER preconditioner

Newton iterations: 10 8* 8* 11 15

GCR iterations: 43 82 84 80 90

total time: 68.3 1029 2328 203.2 561.6
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Numerical experiments

BFS (Re = 100) grids: 24 x 12 48 x24 72x36 96 x 48

lter.picard 48 48 48 48
lter. Linear 13 13 13 13
P

lter.picard 48 48 48 48
lter. Linear 66 66 66 66
LDC (Re = 5000) grids: 162 322 642 1282
Prrar With Yopt = 50

lter.picard 116 200 191 135
lter. Linear 14 20 25 32
P

lter.picard 116 199 189 134
lter. Linear 22 50 134 >400

~ November17,2015 st
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Numerical experiments sparseness of the matrices

(b) G
(c) & (d) G
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6. Maritime Applications

Container vessel (unstructured grid)
RaNS equations

k-w turbulence model

e Model-scale:
J Re = 1.3 - 107
13.3m cells

-
4

T T T
SRR
LI
1 “‘I

max aspect ratio 1 : 1600

s

|
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Tanker (block-structured grid)

Model-scale:

ﬁﬁ Re = 4.6 - 106
>‘ : ’ 2.0m cells

max aspect ratio 1 : 7000

ety :E:E?E;g%% Ee: EE=ses i
S gEsccacss il Full-scale:
Z
‘ Re = 2.0 - 109
X
2.7m cells
max aspect ratio 1 : 930 000
e
i SRcaEs
LT T o EEEE H
e SRS nReR RSt e 3
e e S S e R e
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Discretization

Co-located, cell-centered finite volume discretization of the steady Navier-Stokes
equations with Picard linearization leads to linear system:

Ql 0 0 G1 Ui fl
0 0 G
@2 2 42 = T2 for brevity: @ /
0 0 Q3 Ga| |us f3 D C||g
_D1 Dy Ds C | L] | 9 ]

with Q1 = Q2 = Q3.

= Solve system with FGMRES and SIMPLE-type preconditioner
Turbulence equations (k-w model) remain segregated

- Novembert7,2015 8
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SIMPLE-method

Given u* and p”:
1. solve Qu* = f — GpF
2. solve (C — DQ~1G)p' = g — Du* — CpF
3. compute v/ = —Q Gy’
4. update u¥*+! = u* + v/ and pFt1 = pk 4 p/

with the SIMPLE approximation Q—! ~ diag(Q)~!.
= “Matrix-free”: only assembly and storage of Q and (C — DQ~'G). For D, G and C
the action suffices.

3
Numerical Analysis Group, DIAM TUDelft



SIMPLER: additional pressure prediction

Given u”* and p*, start with a pressure prediction:
1. solve (C — Ddiag(Q)~'G)p* = g — Du* — Ddiag(Q) ' (f — QuF)
2. continue with SIMPLE using p* instead of p*

Numerical Analysis Group, DIAM 'i"U Delft



Container vessel

Tables show number of non-linear iterations and wall clock time needed to converge to
machine precision, starting from uniform flow.

Model-scale Re = 1.3 - 107, max cell aspect ratio 1 : 1600

grid CPU cores SIMPLE KRYLOV-SIMPLER
# its Wall clock # its Wall clock
13.3m 128 3187 5h 26mn 427 3h 27mn

3
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Tanker

Model-scale Re = 4.6 - 10, max cell aspect ratio 1 : 7000

grid CPU cores SIMPLE KRYLOV-SIMPLER

its Wall clock its Wall clock
0.25m 8 1379 25mn 316 29mn
0.5m 16 1690 37mn 271 25mn
im 32 2442 57mn 303 35mn
2m 64 3534 1h 29mn 519 51mn

Full-scale Re = 2.0 - 102, max cell aspect ratio 1 : 930 000

grid CPU cores SIMPLE KRYLOV-SIMPLER
its Wall clock its Wall clock
2.7m 64 29578 16h 37mn 1330 3h 05mn

3
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7. Conclusions

® MSIMPLER is at present the fastest of all SIMPLE-type preconditioners.

® In our experiments, MSIMPLER proved to be cheaper than SILU, especially when
the problem is solved with high accuracy.

® MSIMPLER shows better performance than LSC. Both have similar convergence
characteristics.

® For academic problems, Modified Augmented Lagrangian (MAL) and grad-div are
nearly independent of the grid size and Reynolds number

® MAL/grad-div are faster than (M)SIMPLER

® Future research: MAL/grad-div for industrial (Maritime) applications
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